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The solution is given of the equations of a three-dimensional stationary electrostatic beam of charged
particles of like sign filling the region between two nearby curvilinear surfaces. We assume that the flow
is nonrotational and nonrelativistic and that the velocity vector is a single-valued function. The solution is
constructed in the form of an asymptotic series in powers of the small parameter &, which is the ratio of
the characteristic transverse (¢) and longitudinal (!) dimensions of the problem. The first dimension is
taken to be the distance between the electrodes, and [ defines the scale at which the geometric and physical
parameters (emitter curvature, electric field E on the emitter, and the emission current density J) change
noticeably. The emission regimes limited by the space charge (p~regime), temperature (T-regime), and
the case of nonzero initial velocity (U-regime) are studied. The asymptotic behavior is given by the
formulas for the corresponding one-dimensional flow between parallel surface.

The solution of the boundary problem for emission in the p-regime reduces to determination of the emission
current density J for fixed electrode geometry and given accelerating voltage. The corresponding formulas
are presented, retaining terms of order &°.

Two approximations with respect to & are performed for the T~ and U-regimes. Here the unknown
quantity for given properties of the emitting surface (J) will be the electric field E.

The results provided by the constructed expansions are compared with the exact solution for flow from a
planar emitter along circular trajectories [1]. As an example we examine the two-dimensional problem of
flow between two nearby circular cylindrical electrodes with disruption of the coaxiality.

The conventional tensor notations are used.

1. Basic equations. The regular monoenergetic nonrelativistic beam of similarly charged particles in the
absence of a magnetic field in the stationary case is described by a system of differential equations, which in tensor
form in the arbitrary curvilinear coordinate system gl (i = 1, 2, 3) has the form
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Here vj are the covariant velocity components, ¢ is the scalar potential, p is the space charge density, gik is

the metric tensor, g is its determinant, u is a constant having the sense of the velocity at the emitter. For convenience

we have omitted in (1.1) the specific charge n and 4w, which corresponds to the replacement ng — ¢, 4mp — p. With

this definition ¢ = 0 and E = 0 for the p- and T-regimes.

We use an orthogonal system fixed to the emitter, assuming that q! = 0 is its equation in these coordinates; we
define the collector by the relation q(iz) = f(q?,q%. On the electrodes thus defined we have
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Here symbols with subscript q! denote the physical components of the corresponding quantities; in the p-regime

u=E = 0 and in the T-regime u = 0.

The introduction of the characteristic scales (a in q!,7 in g and g% makes it possible to separate & in (1.1): The
small parameter appears with the derivatives with respect to g and q®. However, it is more convenient to introduce &



symbolically as a sign of the order of smallness of the terms following it, retaining for the notations the sense given
them in (1.1). Then {1.1) is recast as follows:
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Before solving (1.3), we present the expansions for the elements of the métric tensor gjj near the emitting
surface, retaining terms of order g%
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Here wy, ny; Ky, Ky; and 84, 6, are the principal curvatures of the coordinate surfaces ql = const calculated for
q! = 0; consequently, both the coefﬁmen’cs ak of the expansion gy; and v, k, § are functions of g% and ¢*; P, Q are the arc
lengths of the curvilinear axes g2, g°:
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In deriving (1.4) we have considered the conditions that the space be Euclidean, formulated in terms of the
principal curvatures.

2. Solution of the beam equations. We seek the solution of {1.3) in parametric form, defining the parameter 7 in
all approximations with respect to ¢ by the relation

gt /0t = v'. (2.1)
It can be shown that in first approximation 7 coincides with the particle motion time along the trajectory.

We note the technique for integrating (1.3). From the current conservation equation accounting for (2.1) we
have
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The Poisson equation makes it possible to calculate the contravariant electric field component
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which appears in the equation of motion obtained by differentiating the energy integral with respect to gl
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Thus the problem reduces to integration of an equation of the form
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where functions of preceding approximations of required order are substituted into the right-hand sides of (2.2)~(2.4).
The derivatives with respect to q®(« = 2, 3) are calculated with the aid of the relations
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We follow this procedure and obtain the following expressions for the solution in first approximation (the symbol
(1) indicates the approximation number):
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Here T =n+ n, is the combined curvature of the emitting surface.

The formulas defining terms of order &2 for u = 0 have the form
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The coefficients A, B, C, F, V, W in (2.6) depend on the geometric and physical parameters of the problem and
because of their complexity they are not presented here. Let us examine in more detail the case of zero initial
velocity. For u= 0 (2.6) is rewritten as follows:
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(2.7)

The symbol D° and F° means that the expressions for D and F in (2.7) must be supplemented by terms containing
the derivatives of J and E with respect to Q and by the curvatures &, and §,; these terms enter absolutely
symmetrically in view of the complete equivalence of the directions g* and q* (for example, kiJp 1/J must be
supplemented by the term 61JQ|/J) W is obtained from V by the replacement of P — Q, k — §; S is the arc length of the
curvilinear axis ql.

We note that solution (2.5) and (2.7) permits description of flows with continuous transition of the emission
conditions from the T-regime to the p-regime.

In the case of emission limited by the space charge, the logarithmic terms in (2.7) drop out and after excluding 7
expansions (2.5) and (2.7) become the series in q! presented in [2]. In this case, we can use the recurrence relations
presented in [2] to construct the approximations with respect to . Retaining terms of order 2, we have for the
potential
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Terms containing &, and §, and derivatives with respect to @ are again dropped for brevity.

3. Solution of the boundary problem. As mentioned above, for emission in the T-regime the objective is to find
the field E(q?, o°) on the emitter for given emission current density J(q?, o), collector geometry s, = a,%: f = sy (g% %)
and collector potential ®()- Thus the problem reduces to solution of the two equations
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We recall the subscript (2) means that the corresponding terms are calculated on the collector. From (3.1) we
have
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In this case the discriminant of the cubic equation for T(2) is
A = &J73 (QJh® — 2V3) << 0 (3.9)

therefore there are three different real roots. The fact that 7(2) > 0 and E > 0 makes it possible to select the root
satisfying the physical sense of
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The problem then reduces to calculating V and h in the first and second approximations. In so doing As(2) and
A@(2) are calculated from solution (3.4) in zero approximation, while As(1) and Ag(l) are calculated from first
approximation.

The case of emission close to the p-regime (E — 0) requires special analysis, since the discriminant A in this
case approaches zero and the sign of the inequality in (3.3) is now determined by the first rather than the zero
approximation. Here the solution for 7(;) and E should be sought in the form of a series in powers of p = ¢ /2, In this
case it is convenient to introduce the quantity j, which defines the deviation of the emission current density from the
value given by the 3/2 law
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Retaining terms of order 13, we obtain from (2.5)
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Substituting (3.5) into (3.6), we have
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Solving (3.7) for ¢, %,

(3.8)

Finally, let us examine the case of emission in the p-regime, in which the solution is given by {2.8). Solving

(2.8) sequentially for J in the zero, first, and so on approximations, we obtain
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The expression for J takes a more compact form if the collector equation is specified by measuring the distance
from g! = 0 along the arc length S of the curvilinear axis g Se) = Se) (a%, ¢®). Then we have for J(3)

2 (20417 4 Fog 163
T3y = @ {1 — 5 elSw + & | — 57 (4 + %) -+ 5 e +

9 Sg?
1 4 Sgp 47 Siyp 4 Sioyp
ke j;’(; i +(k1+—4—5k2 e }Smw

[ 167 ., 167
P [~ amo L kl(%a ap + gy "2P> + gt T+ g+

43
%1%2T (660 Ky + 15 %2> kl 1

. 49 ,
+ "4‘ Fukeys — =g (0® + 307) — 500

1 124 134 \ S(2)P L
+ (F A — “§o %2> klkz (825 M1 + 823 } S(g) T
. {511 ., 561 S 269 -, 268
T(1375 1T 3T > K T( 375 M T g e T kis +
67 124 134 . S
Uik, — Mzkl -+ —8’2%%1@ + FoE o zk2> SZ:I; ] S(2)3}~ {3.10)
= 2.

65

We see that in the first and second approximations the individual emitter segments operate independently; in this

case J(1) depends only on the over-all curvature T and the distance to the collector along qf; with account for terms of

order £? a second-order differential region on the emitter is made to correspond to a region of the same order on the
collecting surface. In the third approximation the current density is determined by the same region on the collector,
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but interaction with the neighboring regions of the emitting surface begins and this interaction can be accounted for by
using the derivatives of the over-all curvature.

For T(2) We have
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4. Examples. Let us examine the relationship between the results obtained by constructing the expansions in
terms of ¢ and the exact expressions for the known analytic solution describing the flow along circular trajectories
from a plane emitter [1}. We use two coordinate systems for this purpose: polar (R, ¢) and Cartesian (x,y). As the
collector we take the equipotential from the exact solution

P =2y are sin [(20,, 8. (4.1)

and we compare the current density calculated using (3.10)
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with the exact expression Jeoy = 1/2R7% It is easy to see that the region in question has an upper angular bound of
60°(y'= ) in R,y coordinates and the upper angular bound of 36°(y' = ») in the Cartesian coordinates. Figure 1 shows
the collector with potential ¢, = 0.05 and curves of the relative error & = (Jex — J)/Jex in the zero and second
approximations, calculated in accordance with (4.2) (solid curves) and (4.3) (dashed curves). In Rand ¥ coordinates, the
flow is calculated with an error less than 1% in the region ¢ = 0, ¢ = 0.05, R = 2.27; in X,y coordinates the
corresponding region is ¢ = 0, ¢ = 0.05, x = 1.47. Thus, in this case conversion to the system fixed to the trajectory
significantly broadens the region being considered.
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Fig. 1

We would expect that this statement is valid in the general case and can picture an iterative process of coordinate
system optimization whose objective is to improve the precision of the expressions presented in sections 2 and 3.

y

Fig. 2

As an example, consider the problem of determining the emission current density in the p-regime for flow
between two circular cylindrical electrodes whose axes do not coincide (Fig. 2). We used a polar coordinate system
fixed to the emitter (R = 1). Figure 3 shows the curves of J,(3) as a function of the polar angle § for two collectors
(R(z) = 1.25, solid curves; R, = 1.15. dashed curves) and several values of the distance 6 between the centers. Here Jy
is the current density referred to the Langmuir density for a planar diode, based on the minimum distance between
the cylindrical electrodes;
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Figure 4 illustrates the results of the calculation of J, in the zero, first, and second approximations for Ra) =

= 1.25 and 6 = 0.05. The curves of J,(2) and J, (3) in the selected scale do not differ from one another (the maximum
distance along the ordinate is 0.0057).
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